Matematik i støbeskee
MATEMATIKKENS HISTORIE 1: Matematik har længe været menneskets følgesvend. Der kendes genstande med antydning af matematiske aktiviteter, der er mange tusinde år gamle
Videnskab.dk - Matematik i støbeskeen: "Der er afsat tre mærker øverst på den 20.000 år gamle Ishango-knogle. Disse mærker er efterfulgt af 6, 4 og 8 mærker. Det kunne tyde på, at personen, der har sat mærkerne, har kendt til multiplikation med to. Hvis man læg
Labels
00s
2-storey Dwelling
3-D modeling
50s
70s
Achitecture
Amazing
Animations
apparel
Architecture
Art
Astronomi
Bicycle
Books
Brazil
Bridge
Cars
chronograph
Circle
clock
Collage
color
Comics
Concept design
Danish
Dense
Design
digital art
digital imaging
DJ
Drawing
Eco
Events
Form
futurism
Games
generative algorithms
Geometry
geophysics
Graphic Design
Graphic; layout; design; Denmark
graphics
Hiphop
Housing
illustration
Interior
Kasbah
Lamps
Landscapes
layering
Lebbeus Woods
Lego
lighting
Ligth
madrid
mapping and modeling
Markers
Mat
Materials
Math
Me
Merchandise
Michael Bech
Michael Ulf Bech
MichaelBech
Movie
Museum
Music
Natural
New York
Painter
Papercraft
photography
Photography; Architecture
Prefab
Pritzker Prize
Racing; Tech
ReCycle
retro
rocketscience
Sail
Sci-fi
Science; Design
sculptor
Single family house
skateboarding
Sketch
Sketches
Sketching
SketchUp
space
steampunk
Streaming Audio
StreetArt
structure
technology
Terrasse
Texture
tsunami
Urban
Vintage
Visuals
Web
Wood
Showing posts with label Mat. Show all posts
Showing posts with label Mat. Show all posts
20101121
Delaunay triangulation - Wikipedia, the free encyclopedia
Delaunay triangulation - Wikipedia, the free encyclopedia: "In mathematics and computational geometry, a Delaunay triangulation for a set P of points in the plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation; they tend to avoid skinny triangles. The triangulation was invented by Boris Delaunay in 1934[1].
For a set of points on the same line there is no Delaunay triangulation (in fact, the notion of triangulation is undefined for this case). For four points on the same circle (e.g., the vertices of a rectangle) the Delaunay triangulation is not unique: the two possible triangulations that split the quadrangle into two triangles satisfy the 'Delaunay condition', i.e., the requirement that the circumcircles of all triangles have empty interiors.
By considering circumscribed spher
Subscribe to:
Posts (Atom)