Labels
00s
2-storey Dwelling
3-D modeling
50s
70s
Achitecture
Amazing
Animations
apparel
Architecture
Art
Astronomi
Bicycle
Books
Brazil
Bridge
Cars
chronograph
Circle
clock
Collage
color
Comics
Concept design
Danish
Dense
Design
digital art
digital imaging
DJ
Drawing
Eco
Events
Form
futurism
Games
generative algorithms
Geometry
geophysics
Graphic Design
Graphic; layout; design; Denmark
graphics
Hiphop
Housing
illustration
Interior
Kasbah
Lamps
Landscapes
layering
Lebbeus Woods
Lego
lighting
Ligth
madrid
mapping and modeling
Markers
Mat
Materials
Math
Me
Merchandise
Michael Bech
Michael Ulf Bech
MichaelBech
Movie
Museum
Music
Natural
New York
Painter
Papercraft
photography
Photography; Architecture
Prefab
Pritzker Prize
Racing; Tech
ReCycle
retro
rocketscience
Sail
Sci-fi
Science; Design
sculptor
Single family house
skateboarding
Sketch
Sketches
Sketching
SketchUp
space
steampunk
Streaming Audio
StreetArt
structure
technology
Terrasse
Texture
tsunami
Urban
Vintage
Visuals
Web
Wood
20101122
20101121
ANSELM KIEFER - Louisiana Museum of Modern Art
ANSELM KIEFER - Louisiana Museum of Modern Art: "ANSELM KIEFER
Storslået, tankevækkende, gribende. Louisiana præsenterer næsten 90 værker fra fire årtier af en af efterkrigstidens vigtigste tyske kunstnere. Udstillingen er inddelt i fem centrale temaer, der flyder sammen og danner et stærkt og sammensat billede af en af de helt store nulevende klassiske kunstnere.
Anselm Kiefer (født 1945) kan med god ret kaldes 'en levende klassiker'. Han er en i høj grad aktiv og meget produktiv kunstner, der allerede i mange år har indtaget en helt central plads i Louisianas samling og for museets gæster, bl.a. med skulpturen Jason, det store bombefly, lavet af bly. Derfor har Louisiana længe ønsket at vise 'det store billede' af denne kunstner."
Delaunay triangulation - Wikipedia, the free encyclopedia
Delaunay triangulation - Wikipedia, the free encyclopedia: "In mathematics and computational geometry, a Delaunay triangulation for a set P of points in the plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation; they tend to avoid skinny triangles. The triangulation was invented by Boris Delaunay in 1934[1].
For a set of points on the same line there is no Delaunay triangulation (in fact, the notion of triangulation is undefined for this case). For four points on the same circle (e.g., the vertices of a rectangle) the Delaunay triangulation is not unique: the two possible triangulations that split the quadrangle into two triangles satisfy the 'Delaunay condition', i.e., the requirement that the circumcircles of all triangles have empty interiors.
By considering circumscribed spher
20101116
077 PEACE TEMPLE IN HIROSHIMA 20 - ALEX H. LEE
alexhlee.net : 077 PEACE TEMPLE IN HIROSHIMA 20: "077 PEACE TEMPLE IN HIROSHIMA"
atelier a.lee
ALEX H. LEE
Vognmandsmarken 28, 2th
DK-2100 Copenhagen
DENMARK
TEL: (+45) 3927 9699 / (+45) 6015 9399
alee @ alexhlee.net
1-12-28 Hesaka Izue
Higashi-ku Hiroshima
Hiroshima 732-0016
JAPAN
20101108
20101106
QR Code - Wikipedia, the free encyclopedia
QR Code - Wikipedia, the free encyclopedia: "A QR Code is a matrix barcode (or two-dimensional code), readable by QR scanners, mobile phones with a camera, and smartphones. The code consists of black modules arranged in a square pattern on white background. The information encoded can be text, URL or other data.
Common in Japan, where it was created by Toyota subsidiary Denso-Wave in 1994, the QR code is one of the most popular types of two-dimensional barcodes. QR is the acronym for Quick Response, as the creator intended the code to allow its contents to be decoded at high speed.[1]"
Common in Japan, where it was created by Toyota subsidiary Denso-Wave in 1994, the QR code is one of the most popular types of two-dimensional barcodes. QR is the acronym for Quick Response, as the creator intended the code to allow its contents to be decoded at high speed.[1]"
Subscribe to:
Posts (Atom)